skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Littlefield, Colin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Spectroscopic observations of nine cataclysmic variables that have been postulated to contain magnetic white dwarfs were obtained to further characterize their classifications, orbital parameters, inclinations, and/or accretion properties. Zwicky Transient Facility (ZTF) and Transiting Exoplanet Survey Satellite (TESS) data were also used when available. This information enables these systems to be useful in global population and evolution studies of close binaries. Radial velocity curves were constructed for eight of these systems, at various states of accretion. High-state spectra of ZTF0548+53 reveal strong Heiiemission, large radial velocity amplitudes, as well as cyclotron harmonics yielding a magnetic field strength of 50 MG, confirming this as a polar system. Analysis of TESS data reveals an orbital period of 92.1 minutes. High-state spectra of SDSS0837+38 determine a period of 3.18 hr, removing the ambiguity of periods found during the low state, and showing this is a regular polar and not a pre-polar system. The ZTF light curve of CSS0026+24 shows a total eclipse with a period of 122.9 minutes, and features indicative of two accretion poles. A new, remarkably large spin-to-orbit ratio is found for ZTF1631+69 (0.61), making it, along with 2011+60 (=Romanov V48), likely stream-accreting intermediate polars. ZTF data reveal the presence of ∼2 mag low states in ZTF1631+69, and along with McDonald Observatory 2.1 m and TESS light curves, confirm a grazing eclipse that is deepest at a narrow subset of beat phases. The TESS data on PTF12313+16 also indicate a partial eclipse. Analysis of ZTF data on SDSS1626+33 reveals a period of 3.17 hr and suggests the presence of a partial eclipse. 
    more » « less
  2. Abstract We report the validation of multiple planets transiting the nearby (d= 12.8 pc) K5V dwarf HD 101581 (GJ 435, TOI–6276, TIC 397362481). This system consists of at least two Earth-size planets whose orbits are near a mutual 4:3 mean-motion resonance, HD 101581 b ( R p = 0.956 0.061 + 0.063 R ,P= 4.47 days) and HD 101581c ( R p = 0.990 0.070 + 0.070 R ,P= 6.21 days). Both planets were discovered in Sectors 63 and 64 TESS observations and statistically validated with supporting ground-based follow-up. We also identify a signal that probably originates from a third transiting planet, TOI-6276.03 ( R p = 0.982 0.098 + 0.114 R ,P= 7.87 days). These planets are remarkably uniform in size and their orbits are evenly spaced, representing a prime example of the “peas-in-a-pod” architecture seen in other compact multiplanet systems. AtV= 7.77, HD 101581 is the brightest star known to host multiple transiting planets smaller than 1.5R. HD 101581 is a promising system for atmospheric characterization and comparative planetology of small planets. 
    more » « less
    Free, publicly-accessible full text available December 20, 2025
  3. Abstract Hot Jupiters were many of the first exoplanets discovered in the 1990s, but in the decades since their discovery the mysteries surrounding their origins have remained. Here we present nine new hot Jupiters (TOI-1855 b, TOI-2107 b, TOI-2368 b, TOI-3321 b, TOI-3894 b, TOI-3919 b, TOI-4153 b, TOI-5232 b, and TOI-5301 b) discovered by NASA’sTESSmission and confirmed using ground-based imaging and spectroscopy. These discoveries are the first in a series of papers named the Migration and Evolution of giant ExoPlanets survey and are part of an ongoing effort to build a complete sample of hot Jupiters orbiting FGK stars, with a limiting GaiaG-band magnitude of 12.5. This effort aims to use homogeneous detection and analysis techniques to generate a set of precisely measured stellar and planetary properties that is ripe for statistical analysis. The nine planets presented in this work occupy a range of masses (0.55MJ<MP< 3.88MJ) and sizes (0.967RJ<RP< 1.438RJ) and orbit stars that have an effective temperature in the range of 5360 K <Teff< 6860 K with GaiaG-band magnitudes ranging from 11.1 to 12.7. Two of the planets in our sample have detectable orbital eccentricity: TOI-3919 b ( e = 0.259 0.036 + 0.033 ) and TOI-5301 b ( e = 0.33 0.10 + 0.11 ). These eccentric planets join a growing sample of eccentric hot Jupiters that are consistent with high-eccentricity tidal migration, one of the three most prominent theories explaining hot Jupiter formation and evolution. 
    more » « less
  4. Abstract Continuing the project described by Kato et al. (2009, PASJ, 61, S395), we collected times of superhump maxima for 102 SU UMa-type dwarf novae observed mainly during the 2017 season, and characterized these objects. WZ Sge-type stars identified in this study are PT And, ASASSN-17ei, ASASSN-17el, ASASSN-17es, ASASSN-17fn, ASASSN-17fz, ASASSN-17hw, ASASSN-17kd, ASASSN-17la, PNV J20205397$$+$$2508145, and TCP J00332502$$-$$3518565. We obtained new mass ratios for seven objects using growing superhumps (stage A). ASASSN-17gf is an EI Psc-type object below the period minimum. CRTS J080941.3$$+$$171528 and DDE 51 are objects in the period gap, and both showed a long-lasting phase of stage A superhumps. We also summarize the recent advances in understanding of SU UMa-type and WZ Sge-type dwarf novae. 
    more » « less